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Abstract—Loop tiling is a high-order transformation used
to increase data locality and performance. While previous
work has considered its application to several domains and
architectures, its potential impact on energy efficiency has been
largely ignored. In this work, we present an Energy-Aware Tile
Size Selection Scheme (EATSS) for affine programs targeting
GPUs. We automatically derive non-linear integer formulations
for affine programs and use the Z3 solver to find effective tile sizes
that meet architectural resource constraints, while maximizing
performance and minimizing energy consumption. Our approach
builds on the insight that reducing the liveness of in-cache
data, together with exploiting automatic power scaling, can lead
to substantial gains in performance and energy efficiency. We
evaluate EATSS on NVIDIA Xavier and GA100 GPUs, and report
median performance-per-Watt improvement relative to PPCG on
several affine kernels. On Polybench kernels, we achieve 1.5×
and 1.2× improvement and obtain up to 6.3× improvement on
non-Polybench high-dimensional affine kernels.

Index Terms—loop tiling, energy optimization, affine transfor-
mations, GPUs

I. INTRODUCTION

Loop tiling is a critical transformation used to exploit
spatial and temporal locality, while also exposing parallelization
opportunities. It has been effectively used to improve cache
utilization [1]–[3] in a wide variety of architectures, including
CPUs [4], GPUs [5], [6] and FPGAs [7], [8].

Finding tile sizes that maximize performance, i.e., floating
point operations per second, has traditionally been the driving
objective. However, the increase in use of GPU-based hetero-
geneous platforms also adds new challenges when trying to
maximize performance per unit of energy [9], [10]. There has
been a growing use of the performance-per-Watt (PPW) as
a key performance indicator by CPU and GPU vendors [11].
Unlike older GPUs, recent designs are more energy-optimized
and use dynamic voltage and frequency scaling (DVFS) to
manage power consumption [12].

Power consumption can vary dramatically on a GPU, based
on the problem size. As an example, in Fig. 1 we show the
power consumption of a gemm kernel run on a GA100 GPU.
As we increase the size of the problem (increasing M , N , and
K), due to the use of more multiprocessors and the generation
of additional memory traffic, we find that the total power
consumption tracks the dynamic and static power components,
as opposed to remaining constant [12]. As we increase M,N ,
and K from 2,000 to 6,000, the total power is dominated by
dynamic power. Dynamic power depends on GPU utilization

(Streaming Multiprocessors / cache), which in turn depends on
tile size choices. Therefore, there is the potential to improve
energy usage through the proper selection of the tile size.
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Fig. 1: Power consumption of GEMM kernel on GA100 across
increasing problem sizes. At smaller scale constant + static
power dominates the total power. Then, as sizes increase, the
total power is dominated by static + dynamic power.

There is also a high demand from large-scale software service
providers [13] to improve the energy efficiency of their systems
to minimize the carbon footprint of computationally expensive
deep learning pipelines [14]. While there have been efforts
to conserve energy in server environments, these studies have
focused mainly on server power capping [15], [16] or reducing
Dynamic Voltage Frequency Scaling (DVFS) interference [17]–
[20]. Adopting these approaches typically requires granting
administrative access to the computing environment; an impos-
sible privilege in shared cloud environments due to security
concerns.

In this paper, we introduce a new tile size selection scheme,
EATSS, that optimizes both power/energy efficiency and for
performance of affine programs on GPUs, and is based on a
novel non-linear integer formulation. We use the Z3 solver
[21], [22] to find effective tile sizes based on predictive energy
modeling. We incorporate several critical resource constraints,
GPU execution model features, internal knowledge of affine
scheduling, and insights from previous work [23], resulting
in a simple, fast, and accurate model. A distinctive feature
of our work is the ability to explore the trade-off of using
varying degrees of shared memory and L1 / L2 per streaming
multiprocessor (SM), and how to select the SIMT length as a
fraction of the warp size, two factors known to strongly impact
the energy budget on GPUs. The tile sizes found are fed to
the PPCG [24] compiler to produce efficient CUDA code.
In summary, we make the following contributions: i) We
develop, to the best of our knowledge, the first energy-aware
tile-size selection scheme for affine programs on GPUs. ii) We
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Fig. 2: Performance and energy distribution of 3,375 tiled variants on a GA100, N=4000. Left Y-axis is TFLOP/s, and right
Y-axis is energy (J). The baseline (PPCG) is shown as a horizontal line. (a) Tile sizes are sorted by performance. (b) Tile sizes
are sorted by energy.

conduct an in-depth study demonstrating the untapped perfor-
mance and energy space, which was not addressed in previous
work. iii) We demonstrate that our energy-aware formulation is
capable of improving both performance (FLOPS) and energy.
iv) We conduct an extensive evaluation on an NVIDIA Ampere
(GA100) and Xavier, showing the effectiveness of our approach
on several widely used affine kernels.

The remainder of this paper is organized as follows. Sec. II
discusses the motivation for our work. Sec. III reviews several
background concepts. Sec. IV introduces the design of our
energy-aware tile size selection formulation for affine programs
on GPUs. We then present our extensive evaluation in Sec. V,
and conclude the paper with the related work (Sec. VI) and
provide closing remarks in Sec. VII.

II. MOTIVATION

The premise of our work is that a judicious selection of tile
sizes can deliver not only strong/high performance, but also
energy efficiency. We observe that there is a reuse trade-off
overlooked by previous approaches. To illustrate this trade-off,
we conduct an extensive exploration of tile sizes of the 2mm
kernel (two back-to-back MatMul), involving 3,375 variants,
and evaluate their performance and energy-savings on the
GA100 GPU. Fig. 3 shows the performance and energy metrics
for 2mm. We note the room for performance improvement
(around 30%), and energy savings (around 20%) between
both platforms. Our findings suggest we can either improve
the kernel performance, its energy efficiency, or achieve both
objectives. Upon closer inspection of Fig. 2(a), we see that
only a few variants improve the default tiling values used by
PPCG [24] (i.e., only 12% of the variants for 2mm and 15%
for gemm on an GA100). Thus, the challenge is to find a
good tiling configuration within this large tile-size space of
program candidates.

Generally, it is assumed that higher performance leads
to lower energy consumption due to faster execution times.
This is often the case, but it is not the only scenario where
energy is reduced. The energy reduction depends on both the
reduction in power and the run-time. Therefore, if the power
is constant (regardless of the execution schedule), the energy
should be directly proportional to the execution time. However,
our observations in Fig. 1, as well as Fig. 2, show that the
power is variable and depends on the size of the problem
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Fig. 3: Performance and energy distribution of 2mm tile-
space, on GA100 and Xavier. Location of default PPCG [24]
performance and energy marked with P.

and the tiling strategy. In fact, Fig. 2(b) shows that there are
tile sizes that deliver the same level of performance as the
default configuration of PPCG [24], while differing in energy
consumption. Our insight motivates us to incorporate energy
modeling as a primary objective in tile size selection engines.

III. BACKGROUND

GPU Architecture: GPUs adopt a Single-Instruction
Multiple-Thread (SIMT) programming model. GPU program-
ming presents an abstraction of a 3D-parallel architecture. At
the top level, GPUs consist of a set of in-order Streaming
Multiprocessors (SM). A computation offloaded to a GPU
is decomposed into a grid of two dimensions. The outer
dimension of the grid specifies the number of thread blocks,
whereas the inner dimension specifies the number of threads
mapped to each thread block. SMs execute thread blocks at
the granularity of warps, normally 32 threads. All threads in a
warp execute the same instruction on different operands. The
memory hierarchy of modern GPUs consists of registers, SM-
level L1 caches, shared memory (accessible to all threads
in the SM and managed by software), a shared L2 cache across
the GPU, and global memory (DRAM). Coalesced Memory
Access (CMA), a special type of efficient global memory access,
is achieved when threads in a warp (which run in parallel)
access contiguous elements in memory, effectively reducing
the number of memory transactions (relative to the number
of threads issuing the request). Threads, thread blocks, and
SMs have limits on the number of registers that can be used.
The more registers a thread uses, the fewer threads that can
fit into a thread block. Similarly, the more registers used by a



TABLE I: GPU-specific (GA100) input parameters to model.

Abbre- Description Exam- Abbre- Description Exam-
viation ple viation ple
T P B Threads per

Thread-Block
1024 R P T Registers per

Thread
255

T P W Threads per
Warp

32 L1SH L1 + Shared
Memory

192KB

R P S Registers per
SM

64K L2 L2 Memory 40MB

R P B Registers per
Thread-Block

64K

thread block, the fewer warps that can run concurrently within
a single SM, limiting parallelism.

Loop Tiling: Fig. 4 shows the tiled matmul kernel using
tile sizes 32, 64 and 16. Tile sizes control the granularity of
the parallel loops, and also the data footprint accessed within
each atomic execution of a tiled loop (see the three innermost
loops in Fig. 4). In general, larger tile sizes improve locality
(both intra- and inter- thread level), but also reduce the number
of outer-parallel iterations, the ones that traverse the tiles.

Polyhedral GPU Compilers In this work, we use the
Polyhedral Parallel Code Generator (PPCG) [24] to apply
fixed tiling and to produce exploratory spaces consisting of
hundreds of tiled variants. PPCG uses the parallelism exposed
by tiling to map loops onto GPUs, while also permitting the
user to enable/disable the usage of shared memory, and allowing
to provide customized shared-memory budgets.

for(ti=0; ti<M; ti+=32) // ti maps to BID.y
for(tj=0; tj<N; tj+=64) // tj maps to BID.x
for(tk=0; tk<P; tk+=16) //
//-------- Intra Tile Execution -----------
for(i=ti;i<min(M,ti+32);i++)// i maps to TID.y
for(j=tj;j<min(N,tj+64);j++)// j maps to TID.x
for(k=tk;k<min(P,tk+16);k++)// Intra-thread reuse

Out[i][j] += In[i][k] * Ker[k][j];

Fig. 4: Tiled matmul with 32, 64, 16. Standard CUDA
variables abbreviated as BID (blockIdx), TID (threadIdx).

IV. ENERGY AWARE TILE SIZE SELECTION

A. Overview

Our approach uses properties of the computation, together
with the architectural characteristics and resource constraints
of the GPUs, to optimize the efficiency and performance
of energy / power simultaneously. Our formulation selects
tile sizes that benefit more from higher intra-SM and inter-
thread data sharing versus intra-thread locality. Our approach
constrains the time that data solely used by individual threads
remain resident in the cache. At the same time, cache resources
are better used when multiple threads share and access the
same data, leading to higher reuse of inter-thread data, creating
a similarity of resource partitioning. To achieve this type of
reuse, we maximize the tile sizes of the loop dimensions
that are parallelized (e.g., loops ti/i and tj/j in Fig.
4) and carry spatial data reuse (i.e., that induce CMA). In

†We refer to the tile sizes used in matmul, one per input loop dimension, as
Ti, Tj and Tk .
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Fig. 5: Schematic showing the trade-off between intra-
thread and inter-thread locality. Our objective function (See
Sec. IV-K) maximizes the product of tile sizes (i.e., Ti and
Tj)† associated to parallel loop dimensions. In turn, the tile
size of loop dimension Tk (not parallel) and which carries
reuse, is constrained. Smaller Tk values reduce the lifetime of
tile Out in L1. Larger values of Ti and Tj increase intra-SM
inter-thread data sharing as Ti determines the reuse on data
tile Ker, while Tj controls the reuse on data tile In.

turn, this reduces the tile sizes associated with non-parallel
loops, which carry data reuse as shown in Fig. 5(b). This
optimization criteria effectively trade off intra-thread locality
for inter-thread data reuse. However, we also have to maximize
overall GPU resource utilization. Hence, our formulation also
aims to maximize the number of threads per computational tile
to be distributed over SMs. Our model is further parameterized
by the amount of available GPU resources: a warp fraction
size, the thread block size, the number of available registers
per thread and per SM, the L1 and L2 cache sizes and the
available shared memory. We adapt resource usage based on
floating-point precision (i.e., FP32 (Single Precision) and FP64
(Double Precision)). Lastly, a unique feature of our tile size
selection scheme is that it permits us to explore the trade-offs
between mapping arrays to hardware-managed caches versus
user-controlled shared memory in the GPU. These parameters
are listed in Table I.

TABLE II: matmul array properties: CMA (Coalesced Mem-
ory Accesses), Reuse Type (T: Temporal, S: Spatial).

Array Memory CMA Reuse
Reference Type Capable Type (Loop Dim)
Out[i][j] L1 Yes T-reuse (k), S-reuse (j)
In[i][k] Shared-Mem No T-reuse (j), S-reuse (k)
Ker[k][j] L1 Yes S-reuse (j)

Access Patterns: EATSS selects tile sizes by leveraging
memory access patterns of array references. For the matmul
example, a summary of the patterns and associated properties
is shown in Table II. We first classify each array reference as
either cache mappable or shared memory mappable. Arrays of
the former type are those that can be accessed via CMA or are
repeatedly and frequently updated (hence, they are guaranteed
to remain in the cache). Arrays of the latter type may exhibit
limited (spatial) reuse, but are not capable of CMA access (e.g.,
reference In of matmul). Thus, we assign a heavier weight to
tile sizes that benefit cache-mappable references. This choice
will, in turn, constrain tile sizes that possess temporal reuse or



no reuse at all. For example, in matmul, this constrains tile
size Tk. We also harness the ability of modern GPUs to shift
memory resources between the L1 cache and shared memory.
This resource is modeled as a combined memory where the
split between the two memory types is controlled via an input
parameter in the range of 0.0 to 1.0.

Upon classifying array references by type, we favor tile sizes
of dimensions amenable to CMA over those that are not CMA
capable. We aim to estimate the energy consumed per array
reference using the number of cache lines and the number of
times that these are accessed. This assumption holds for threads
in an SM when CMA-capable references exhibit O(n) reuse and
when the data footprint of cache-mappable references fits in the
L1 cache. If tile sizes are carefully chosen, the data for each
cache-mappable reference will target a disjoint cache portion.
In the matmul example, threads in each computational tile,
mapped to an SM, will access cached data tiles of size Ti×Tj

and Tk×Tj elements for arrays Out and Ker, respectively, as
shown in Fig. 6. Further, the sum of both footprints must not
exceed the L1 cache capacity per SM to avoid cache capacity
misses and uphold our previous assumption for approximating
energy. At the same time, the reuse in these references will
be Tk for Out and Ti for Ker, higher being better. On the
other hand, as array In is mapped to shared-memory, its data
footprint, measured as Ti ×Tk elements, will be limited to the
shared memory capacity.
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Fig. 6: Schematic of how is chosen the memory type for each
array reference. Loop dimension j is selected as CMA (See
Sec. IV-D). Thus, references Out and Ker are mapped to L1,
while reference In is mapped to shared memory. (Sec. IV-E).

Resource Partitioning: Our model uses the hardware
resource limits of Table I to enforce partitioning of GPU
resources. In general, we model resource usage as some
function of the tile sizes associated to iterators indexing array
references. The number of threads in a thread block (modeled
with Bsize), upper-bounded by parameter T P B, will be the
product of the tile sizes associated with the (parallel) loop
dimensions used to access written arrays. For the matmul
example, this would be Ti × Tj ≤ T P B. Similarly, the
registers used per SM are modeled as the product of the size of
the thread block and the number of references in the computa-
tion, while the memory footprint is estimated as the sum of the
footprints of all arrays assigned to a memory type. For matmul,
targeting the NVIDIA GA100, using 50% of the combined
L1 + Shared Memory for each type of memory, FPfactor =
2 (for FP64), and a WARP_ALIGNMENT_FACTOR of 16 (0.5

of warp size T P W ), these last hardware constraints would
then be added to our formulation: Bsize × 3 × 2 ≤ R P S,
Ti ×Tj +Tk ×Tj ≤ ML1 (L1 cache capacity constraints) and
Ti × Tk ≤ MSH (shared memory capacity constraints).

Objective Function: Ultimately, we produce a single
objective function that balances SM parallelism and inter-
thread (but intra SM) locality with the selected tile sizes.
For the matmul example, the objective function used is:
Ti×Tj+[(0×Ti)+(2×16×Tj)+(0×Tk)], which is iteratively
optimized using Z3, and produces the solution: Ti=16, Tj=384,
and Tk=16. The first term, Ti × Tj , represents the parallelism
component as the number of threads per computational tile,
while terms 2-4 (in square brackets) are the tile size variables
with a weight proportional to the CMA benefit achieved through
the tile size of each loop dimension. We note that Z3 finds
satisfiable solutions to our formulation. Therefore, our scheme
finds a first solution and then attempts to maximize it, iteratively,
until no better solution is found.

B. Bounds on Tile Size Variables

Let L be the maximum dimensionality of the loop nest. We
define L tile size variables Ti, with i ∈ {1, 2, . . . , L}. Each of
the Ti variables is bounded by the integer interval [1, T P B],
defined in Table I. When the problem sizes are known, the
upper limit of the previous range becomes min(T_P_B,N).
We also leverage Z3’s expressiveness to force the selection
of tile sizes to be multiples of a WARP size by introducing
the constraint Ti%T P W = 0. However, we note that this
constraint can be adapted to smaller values. For example,
instead of the typical size of 32 threads per warp, we use
multiples of 16, 8, or 4. Leveraging this knob, which we
call WARP_ALIGNMENT_FACTOR, becomes necessary since
forcing tile sizes to be multiples of some large number could
render an empty solution space. In practice, this occurs with
higher-dimensional arrays, 3D and larger. Furthermore, the
problem is exacerbated in smaller GPUs that are equipped with
fewer resources.

C. Volume per Reference

Next, we model the required memory per array reference.
Let ki be the loop iterator associated with the loop level i, we
represent the memory used by a data tile of reference fA as
V fA

=
∏

i tile extent(fA, i), where tile_extent() is a
helper function that returns Ti if iterator ki is used in fA,
and 1 otherwise. For example, this model will produce the
product Ti1 × Ti3 for a reference such as C[i1][i3] when
surrounded by a 3D-nested loop. To accelerate and simplify
the solution process, we lower-bound all V fA

variables by
each of the Tki

tile size variables associated to iterators used
to access fA.

D. Selecting the Loop Dimension for Coalesced Memory
Accesses (CMA)

Our approach prefers parallel loop dimensions that exhibit
stride-1 access across as many array references as possible.
This criterion is similar to the requirements for vectorization in



CPUs, with the difference that the CMA loop is instead used
as the thread-id. When presented with two or more choices, we
select the loop dimension used in most arrays and refer to this
loop level as ls1. For our matmul example, consisting of ref-
erences Out[i1][i2], In[i1][i3] and Ker[i3][i2],
the selected loop for CMA would be loop-i2, as it allows
us to exploit CMA on two of the three references.

E. Splitting Memory References

Next, we split the set of array references into two sets:
1) those that are capable of effectively exploiting coalesced
memory accesses and 2) those that do not. The first set will
consist of the references that will exploit the L1 cache (L1set),
while the references in the second set will exploit shared
memory (SHset). Any array reference that produces a sequence
of contiguous memory accesses in the loop ls1 will use the
L1 cache, while those that do not will use the shared memory
local to an SM. The following constraints model how much
memory of each type is used in a kernel:

ML1 =
∑

fA∈L1set

V fA ∧ MSH =
∑

fA∈SHset

V fA

(1)

We note that the rationale for this decision is to better model
CMA-incapable accesses, which in order to avoid repeated
non-CMA accesses, are mapped to shared-memory. Intuitively,
any non-CMA array reference would repeatedly access global
memory, without the benefit of prorating this cost among the
threads in the thread block. If non-CMA accesses are allowed
into the L1/L2 caches, their accessed data – not shared by
threads in the SM – would remain longer in the L1 and L2
caches, increasing the memory traffic and energy expenditure.
Furthermore, mapping non-CMA data to shared-memory frees
valuable resources to CMA-capable references.

Continuing with the matmul example, references Out and
Ker would be chosen to exploit the L1 and L2 memories,
while reference In will use shared memory.

F. Estimating the Thread-Block Size

To properly balance the selection of tile sizes, we estimate
the number of threads per thread block by computing the
product of the tile sizes used for up to the first three outer-
parallel loop dimensions, Bsize =

∏
i is par Ti. This choice

is rooted in the fact that if a loop dimension is not parallel,
it will not be selected as a mappable dimension for the GPU.
Consequently, it will have no impact on the thread-block size,
but rather only impact the locality and energy.

G. Controlling the Number of Registers per SM

A critical feature of our model is to limit the usage of
the register per SM. While for most practical purposes the
constraints on shared memory, L1 and L2 cache will prevent
us from exceeding the limit on the number of registers used per
SM, it can happen that owing to our L1+shared-memory split
strategy, the tile size dimensions carrying temporal reuse will
be allowed to grow unchecked. This phenomenon increases
the memory footprint in the L2 cache, which together with the

internal scheduling of thread blocks and warps (a black-box
scheduler), will increase the time that data are live in the L2
cache. This can incur higher memory traffic between L2 and
global memory. Moreover, as observed in prior studies [23],
higher liveness of data at this level of the memory hierarchy
in GPUs is one of the main sources of wasted energy. Our
approach tries to avoid this scenario, favoring the reduction of
tile sizes that only carry temporal reuse. The reader will notice
that maximizing the thread block size will indirectly minimize
the tile sizes associated with the loop dimensions that carry
temporal reuse exclusively, as well as any other tile size of
any parallel loop dimension not used for mapping to the GPU
resources. In addition, to favor more equal sharing of registers
(and of the shared/L1/L2 memories), we estimate the number
of registers per SM as REGSM = Bsize × no.references,
where no.references is the number of references accessing
distinct cache lines. The REGSM variable is upper-bounded by
the GPU parameter R P S (Registers per SM). For example,
the number of references for the matmul kernel would be 3,
while for the fdtd-2d kernel it would be 4 (two references
typically lie in the same cache line).

H. Modeling the L2 Cache

In some scenarios, we can prefer to use all combined
L1 + shared memory resources only for shared memory.
Consequently, the constraints about the L1 cache become
irrelevant, and we skip their introduction. Afterward, while the
L1 cache may no longer be a factor, the amount of L2 cache
per SM effectively replaces the L1 constraints. The decision
to adopt this modeling strategy for the L2 cache is based
on the property that, when loading data from global memory
into shared memory, most GPU architectures still have to go
through the L2 cache. To the best of our knowledge, only the
NVIDIA GA100 bypasses the L2 cache when loading data
into shared memory.

I. Resource Adaptation to Single/Double Precision

In several architectures, including GPUs, it is common for
the double precision (DP) peak performance to be half of the
single precision (SP). We use this common GPU characteristic
and introduce a scaling precision factor to adjust our model,
thus making it aware of the implications of choosing SP or DP.
To model this property, we refine the estimation of registers
per SM, REGSM , as REGSM = Bsize × no.references×
FPfactor, where FPfactor is 1 for single precision and 2 for
double precision. This refinement is inspired by the fact that
in most CPU and GPU architectures, wider vector registers are
produced by using multiple smaller ones. The impact of this
decision halves the register budget per SM.

J. Establishing Resource Limits

Our formulation requires that a split factor between 0 and
1.0 be assigned as input to the model generator. This factor
will be used to divide the combined L1 + shared memory per
SM. A zero value for the split factor represents the full usage
of L1 + shared memory for the L1 cache (if the architecture



allows it), while a value of 1.0 allocates all resources to shared
memory. Values between 0 and 1.0 will be used to explore
the design space of tile sizes. Typical values of interest are
0.25, 0.5, 0.75 for the GA100 and Xavier. Memory resource
limits of the GPU are scaled down based on the byte width
of the corresponding floating point datatype, for the model to
use units compatible with the number of loop iterations.

MSH ≤ SPLIT FACTOR× L1SH ∧
ML1 ≤ (1− SPLIT FACTOR)× L1SH

∧ ML2 ≤ L2 (input) ∧ REGSM ≤ R P S

K. Tile Size Selection Objective Function

We use a single objective function (Eq. 2) to select tile size
configurations that optimizes both performance and energy. It
consists of two terms, the parallelism term (left) and a spatial
locality term (right), producing a weighted sum of tile size
variables.

OBJ =
∏

i is par

Ti +
∑

(Hi × Ti) (2)

Maximizing OBJ leads to higher inter-thread data shar-
ing by preferring it over intra-thread locality. This is achieved
by considering only parallel dimensions in the left term.
Ultimately, OBJ is used as a proxy for active cache lines. Via
dependence analysis, before applying the tiling transformation
(but after computing it), loops are identified as parallel or
serial (including permutable-only loops). The parallelism term
is represented by the product of tile sizes that contribute to the
size of the thread block. We also note that we only include up
to the first three parallel loop dimensions, given the fact that
threads in most GPUs only use a maximum of 3 dimensions
for their index representations, and often only rely on 2 or 1. In
most cases, this product will only involve two loop dimensions.
The reader will also notice that when the loop chosen for
CMA, ls1 is parallel, it will be chosen to define the thread-
block size and also contribute to the objective function. The
weights used in the spatial locality term, Hi, are statically
computed fixed factors. They model the number of times each
loop iterator appears in the fastest varying dimension (or stride-
1 dimension) among all of the array references. Further, we
consider here three sub-cases; First, when the loop iterator
is associated to a loop dimension that can yield CMA, Hi

is scaled by WARP_ALIGNMENT_FACTOR; Second, in loop
nests with dimensionality 3D or higher, Hi is nullified if the
loop is not parallel to favor CMA; Lastly, in 2D loop nests
(when often only one loop dimension is parallel), the parallel
loop is ignored (since it is already mapped), and we instead
prefer to increase the tile size of the nonparallel loop.

L. Repeatedly Finding Solutions with Z3

We use the Z3 solver to find solutions to the non-linear
integer formulation produced with EATSS. As Z3 does not
find optimal solutions for this type of problem, we resort to
introducing an additional constraint of the form OBJn+1 >
OBJn and use it to find optimal solutions in an iterative fashion,
and terminate when no more solutions are found. Hence, our

approach finds a first solution and then proceeds to gradually
improve upon it.

M. Advantages and Application of our Model Generator

Our model provides us with several features. First, it enables
one to easily switch between single and double precision,
while also allowing us to explore the effects of splitting the
combined resources of the L1 and shared memory. Second,
the formulation is problem size agnostic, but can also benefit
from using fixed problem sizes when these are known. Third,
the formulation presented in this section forms the basis for a
Model Generator which can be used in a variety cases: i) it
can be integrated into an auto-tuning framework to determine
effective tile sizes for parametrically tiled code (when the
transformation is applied before the selection of tile sizes) or
to choose them before applying the transformation with fixed
tile sizes; ii) it can be used in tandem with a GPU-polyhedral
compiler such as PPCG [24] to determine kernel-wide tile sizes
that control the granularity of work units in the GPU; iii) it
can be integrated into toolchains that perform JIT compilation,
which is commonplace in deep learning frameworks.

V. EXPERIMENTAL EVALUATION

A. Experimental Setup

We evaluate the effectiveness of our tile size selection scheme
in the Polybench / C 3.2 benchmark suite [25]. We complement
our study with three non-Polybench kernels that are commonly
used in linear algebra and machine learning, mttkrp, heat-3d,
convolution-2d. Experiments were conducted on two NVIDIA
GPUs that represent the high and low levels available in the
market. Their characteristics in terms of performance and power
consumption vary, and their details are shown in Table III.
Given the different GPUs, we employ a different Polybench
dataset for each system: EXTRALARGE for the GA100, and
STANDARD for the Xavier GPUs.

TABLE III: GPU Testbed Specifications
GA100 AGX Xavier

Architecture Turing Volta
Multiprocessor count 108 8
L1 / L2 cache 192 KB / 40 MB 128 KB / 512 KB
Shared-mem per block & SM 48 KB / 164 KB 48 KB / 96 KB
Registers per block 65536 65536
Global memory 40 GB 32 GB
CUDA version 11.4 10.2
Peak FP64 (GFLOPS) 9700 44†

Thermal design power 250W 30W
† cuBLAS FP64 performance

Exploration Space: We conduct seven sets of experiments.
In the first set (Sec. V-B), we evaluate the benchmarks on
all GPUs. For each benchmark, we explore a space of tile
configurations (approximately 200-800 variants), depending on
the maximum loop dimensionality of the kernel. We then
generate with EATSS‡ three tile size configurations per
benchmark (corresponding to three levels of shared memory),
and compare our best result against the entirety of the tiled

‡Artifacts at: https://doi.org/10.5281/zenodo.10362265 [26], https://github.
com/mkongiv/eatss.git [27].

https://doi.org/10.5281/zenodo.10362265
https://github.com/mkongiv/eatss.git
https://github.com/mkongiv/eatss.git
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(b) Performance and energy distribution on Jetson AGX Xavier®.

Fig. 7: The X-axis shows the normalized FLOPs and each dot represents a tiled variant. P is default PPCG, U is EATSS and E
shows our energy separately. (Table key: Med PPCG: program variant with median performance in the space, Def PPCG:
program variant with default tile configuration (32n), Best PPCG: program variant with best performance in the space.)

space across the two metrics of interest, performance, and
energy. Tile sizes are passed to PPCG to produce efficient
CUDA-tiled code for each GPU. We set the amount of available
shared memory per GPU to match our best configuration
and keep all PPCG default options. As a second experiment
(Sec. V-C), to understand the underlying source of our energy

efficiency, we analyze the correlation between the number
of L2 cache lines (sectors) and the average power across
four benchmarks of representative computational classes. In
Sec. V-D, we evaluate three non-polybench kernels often
used in computer vision and machine learning applications
on the GA100. Subsequently, in Sec. V-E, we compare our



performance against native CUDA libraries, in Sec. V-F we
study the impact of varying the problem size and in Sec. V-G
we briefly discuss the low overhead associated with Z3. Lastly,
in Sec. V-H we compare EATSS with ytopt, a state-of-the-art
auto-tuner.

Methodology for Data Collection: Power measurements are
obtained with nvidia-smi [28] for GA100 and tegrastats [29]
for Xavier. Each tiled kernel variant is run 100 times with
samples collected at 10ms intervals to allow for a sufficient
number of samples to be collected during execution (similar
to recent work [12]). Execution times and cache metrics at the
kernel level are obtained with NVIDIA NSight [30]. Having
obtained the execution time (in seconds) and the average
power (in Watts) during execution, we estimate the energy
consumption in joules (energy = poweraverage × timeexec).

B. Results on Polybench

Fig. 7a-7b show the performance and energy expenditure
range achieved over the evaluated space. We include the
“default tile configuration” performance, i.e., 32d (d: maximal
loop depth of the kernel), and mark it with ’P’ in the spectrum.
The tables on the left also show the median and best empirically
found data points in the space for performance-per-Watt (PPW),
performance, and energy. The 32d tile sizes often yield good
out-of-the-box performance, but still under-perform owing to
the criterion of only using a large fraction of 32KB caches
without over-spilling, largely ignoring energy efficiency
implications. EATSS achieved performance and energy within
the spectrum is denoted with ’U’ (us).

To capture the effects of performance and energy improve-
ment, we use the performance-per-Watt metric [31]–[33], as
computed in Eq. V-B. The intuition of this metric is that given
the same number of flops performed by two tiled variants
of the same benchmark in their respective executions, the
performance-per-Watt represents the number of FLOPs that
can be computed with a unit of energy.

performance / watt (PPW) =
(Floating-point ops per second)

average power (W)

Overview of expected results: In general, we should hope
for stronger improvements on dense linear algebra kernels
that exhibit two or more levels of parallelism, an order O(n)
of data reuse, and at least one vectorizable loop dimension.
Kernels with these characteristics are mainly of the BLAS3
type (e.g., gemm), but also covariance and correlation. We find
a second class in 2D-kernels that exhibit constant reuse O(1),
e.g., mvt. In these kernels, our forecast changes to modest
improvements given that there are fewer trade-offs between
locality and parallelism to exploit. Lastly, kernels of a third
type, mostly consisting of iterative stencils (jacobi-2d, fdtd-2d),
are interesting in that there is often a single, extremely obvious
loop dimension used to exploit stride-1 and CMA. However,
since PPCG does not exploit interstep data reuse (i.e., time-
tiling), and only the space dimensions are tiled, we expect only
a moderate level of improvement.
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Fig. 8: Performance and energy achieved with EATSS under
different splits of shared-memory and L1-cache. Speedup:
higher (> 1) the better and energy: lower (< 1) the better
(SM: Shared Memory); metrics normalized to Default PPCG.

Analysis of evaluation: Our results on the GA100 (Fig. 7a),
exhibit the following trends. For 2mm, 3mm and gemm, we
outperform default PPCG in terms of performance and are
close to the best performance observed in our search space
(for 2mm & 3mm). Although we may not achieve the best
performance in terms of FLOPs, the performance-per-Watt
for our scheme is higher than that of the best PPCG result
(which uses our chosen amount of shared memory). This is
because EATSS trades intra-thread data reuse for inter-thread
data sharing while cooperating with the GPU’s DVFS.

In the stencil category – fdtd-2d, fdtd-apml, jacobi-1d and
jacobi-2d – we outperform default PPCG moderately in
terms of performance and performance-per-Watt. Our scheme
can exploit CMA along a single-loop dimension. In low-
dimensional kernels (atax, bicg, mvt and gemver), EATSS
outperforms default PPCG in performance-per-Watt. Selecting
an energy-efficient tile size for these kernels is difficult since
they only have one parallelizable loop mapped to CTAs, thus
limited data reuse.

On the Xavier GPU, Fig. 7b, we achieve near-peak per-
formance the gemm, 2mm, 3mm and covariance kernels. We
greatly outperform the default PPCG performance for the 2mm
and gemm benchmarks, but observe slightly poorer performance
for 3mm. For gemm, we obtain a performance improvement of
45% and an improvement of about 42% in performance-per-
Watt. Turning our attention to stencil computations, we can see
that fdtd-2d & jacobi-1d outperform default PPCG. However,
fdtd-apml and jacobi-2d experience a slight slowdown. On
the gemver kernel, we outperform default PPCG in terms of
both performance and performance-per-Watt. However, mvt and
atax experience no performance gain, while bicg experiences
a slight slowdown.

Impact of Shared-Memory quotas: We now demonstrate
that, to improve performance and energy efficiency, the
optimization space of tile size selection must consider the
possible splits between shared-memory and L1 cache. To show
this, we compare EATSS against PPCG’s default performance
and energy under the same amount of shared-memory as our
best (See Fig. 8). For each platform, we consider three levels
of shared-memory usage from the set – 0%, 50% or 67%, and
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100%. We observe that using 100% of shared-memory does
not always yield the best performance or energy efficiency.
Using less shared-memory results in increased L1 and L2
cache sharing, and in-cache data liveness. For the BLAS3-like
kernels, we can see that exploiting more shared-memory will
typically amount to better performance and lower energy usage.
On the contrary, for lower-dimensional kernels, such as mvt,
using less shared-memory (0% or 50%) often produces the
best results on the Xavier.

C. Relation between L2 Cache Usage and Average Power

Fig. 9 shows cache statistics of 700+ tiled variants for 2mm,
gemm, jacobi-2d and mvt. We note the relation between the
number of L2 cache lines read by the kernel and the average
power during execution. We use the number of L2 cache lines
read (extracted using lts t sectors srcunit tex op read.sum
keyword in Nsight Compute profiler) as a proxy to data-liveness
in the L2 cache, as this metric can only be computed through

simulation, as shown in previous work [23]. We observe a
high correlation between the number of L2 cache lines, also
referred to as sectors, read by 2mm, gemm program variants,
and the average power reported. In Fig. 9 Pearson’s correlation
coefficient is 0.85 and 0.75 for 2mm and gemm, respectively.
The same trend does not hold in kernels with O(1) reuse, e.g.,
jacobi-2d and mvt. In summary, these observations support our
choice of objective function formulation, which captures the
effects of the L2 cache utilization to generate energy-aware
tile sizes. Our results also explain the reasons behind the
improvements achieved by EATSS.

D. Case Study - Leveraging different warp fractions

Next, we present results on three non-polybench kernels, a
2D-convolution, a 3D-heat stencil and mttkrp (matricized tensor
times a Khatri-Rao product). We note that these kernels are
notoriously hard to optimize, owing to larger transformation
spaces resulting from higher loop dimensionality (4D), larger
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Fig. 12: Relationship of performance and average power with input size. The highlighted labels show the PPW.
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Fig. 13: Performance and average power relation as a function
of input size, GA100. Highlighted labels show the PPW.

memory space requirements, complex data access patterns and
several choices for parallelization that affect intra-SM locality.
This is evidenced by the performance distribution shown in
Fig. 11. We see that PPCG’s default tile size (P marker) and
median (M) perform rather poorly. Simply selecting a tile size
by respecting resource constraints largely ignores its effect on
the granularity of parallelism, as larger tile sizes yield fewer
units of work to distribute across the 2D-parallel architecture
of GPUs. These experiments are conducted on the GA100,
and use 0% or 50% of shared-memory for baseline variants.
The two shared-memory quotas used are chosen based on the
results of Sec. V-B. The higher data dimensionality of these
kernels (e.g., 3D arrays) requires allowing for tile sizes smaller
than a full warp (32). Otherwise, several configurations could
exceed shared memory and L1 capacity. We set the parameter
warp fraction to 0.125, 0.25, 0.5, and 1.0 to produce a larger
exploration space with EATSS. This allows us to explore tile
sizes as small as 4. The defined space will consist of 11
tile configurations for conv-2d and mttkrp, and 9 tile sizes
for heat-3d. Missing configurations do not satisfy resource
constraints, as all tile sizes would need to be multiples of 16.
These cases correspond to the set warp frac=1.0 with shared-
memory=50% for conv-2d and mttkrp, and all scenarios of
heat-3d with warp frac=1.0.

Fig. 10 shows an overall speedup of 4.8× for conv-2d,
6.3× for heat-3d and 2.0× for mttkrp, relative to PPCG’s
default configuration using the same quantity of shared-memory
as our best variant. Our selected tile sizes lead to the same
improvements on energy, i.e., 4.8× for conv-2d, 6.3× for
heat-3d and 1.9× for mttkrp. Fig. 11 shows the explored
tiled-space as a 2D histogram using the Freedman Diaconis
Estimator to take data variability and data sizes into account
when selecting bin sizes. Bins located closer to the bottom-
right corner represent higher performance and better energy
efficiency. Our study highlights that EATSS not only beats
PPCG’s default and median performance, but that we are also

reasonably close to the best empirically found variants at a
very low exploration cost.

E. Comparison with cuBLAS / cuDNN

In Table IV, we compare the performance of EATSS with
cuDNN (v8.1) / cuBLAS (v11.3). Unlike cuBLAS and cuDNN,
PPCG generated code does not leverage tensor cores, and a
direct comparison between PPCG and cuXXX is not possible.
The peak FP64 machine performance of the GA100, with
tensor cores, is 19.5 TFLOP/s, and without tensor cores is 9.7
TFLOP/s. Our results show that we can achieve 75% of the
highly tuned cuBLAS/cuDNN PPW on the GA100, and more
than 2.1x of the PPW on the Xavier GPU.

TABLE IV: Comparison against cuBLAS / cuDNN
Description cuBLAS (gemm) cuDNN (conv-2d)
Platform GA100 Xavier GA100
cuXXX Perf/Watt 105.94 23.32 24.8
PPCG Median Perf/Watt 40.2 26.4 2.9
Our Perf/Watt 78 49.1 18.9
cuXXX Energy 2.42 J 180 mJ 6.28 mJ
PPCG Median Energy 6.37 J 162.93 mJ 134 mJ
Our Energy 3.28 J 87.45 mJ 21 mJ
cuXXX GFLOP/s 18292 42.31 1405.55
PPCG Median GFLOP/s 3676 30.6 180
Our GFLOP/s 3721 35.5 813

F. A sensitivity study of the input size on power consumption

We present the impact of problem size on EATSS in Fig. 12.
Our performance uses the best tile size determined by EATSS
and we use the default tile size for PPCG. We do not use auto-
tuning for tile selection of PPCG as the search space explodes
when varying both input size and tile dimensions. As shown
in Fig. 1, for smaller problem sizes in 2mm and gemm, static
+ constant power is dominant. Intuitively, as the problem size
increases, the GPU’s SMs reach full utilization. Therefore, the
power consumption will reach saturation for very large problem
sizes. This observation is consistent with Fig. 1. mvt and fdtd-
2d do not computationally saturate the GPU and predominantly
use static power in terms of total power consumption. In the
case of fdtd-2d, we observe a zigzag behavior due a high
number of cache conflict misses. We investigated and found
that padding improved performance and removed the zigzag
effect. We end the sensitivity study by analyzing the problem
size impact on non-polybench kernels when using EATSS in
Fig. 13. For conv-2d, the performance-per-Watt is higher than
observed using the baseline PPCG.



G. Compile Time Overhead due to Z3

Our iterative scheme works quickly. EATSS averages 1.3
seconds for the end-to-end iterative process across all kernel
dimensionalities and architectures with the Z3 Python-solver. If
grouping all configurations by classes of maximum kernel loop
depth (2D, 3D, 4D, and 5D computations), we obtain average
end-to-end times of 1.1 s, 1.4 s, 1.4 s, and 2.2 s, respectively.
A single call to the Z3 solver, using our formulation in 391
different configurations, requires 0.29 seconds and between 4
to 7 solver calls, on average.

H. Comparison with Autotuners

We next provide a comparison with ytop, a state-of-the-
art autotuner based on Bayesian optimization. We built ytop
with Clang + OpenMP GPU device offloading support. Since
ytopt relies on OpenMP, performance decreases compared to
PPCG, which generates native CUDA code. However, for
kernels with 3 nested loops, such as 2mm, gemm, heat-3d
and mttkrp, the tuning time was observed to be 17 minutes,
whereas EATSS+PPCG generates CUDA code from selected
tile sizes in seconds, as shown in Sec. V-G.
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Fig. 14: Speedup (> 1 is better) and normalized energy (< 1
is better) of EATSS against ytopt [34] baseline on A100.

VI. RELATED WORK

Tile Size Selection (TSS): Several polyhedral frameworks,
such as PLuTo [1], Polly [35], PPCG [24], polly-ACC [36] and
PolyMage [37], leverage loop tiling. Earlier work on TSS was
strongly tied to cache characteristics [38]–[40]. Determining the
best tile sizes and unroll factors simultaneously was explored by
Kisuki et al. [41]. Rather than a static cost model, the authors
use an iterative code generation approach to determine the best
combination of tile size and loop unroll factor. Coleman et al.
[38] chose tile sizes based on cache line size and fixed problem
sizes for direct-mapped memories. However, direct-mapped
caches are not widely used in modern microarchitectures.
Recent work on TSS focuses on leveraging tiling and reuse by
analyzing either the usage of the cache hierarchy or by reducing
cache conflict misses [42], [43]. In the multicore / GPU era,
techniques proposed for TSS on CPUs range from dynamic
programming [44], through artificial neural networks [45],
to directly incorporating them into ILP scheduling [46]. On
GPUs, techniques such as optimizing to reduce uncoalesced
global memory accesses [47] and performing a highly parallel
reuse distance analysis [48], aim to improve performance.
In contrast, earlier work on TSS on GPUs focused on do-
across parallelism requiring the wavefront method. More
recently, Abdelaal and Kong [5], building on the legal space
formulation [49], proposed a joint-scheduling and TSS scheme

for GPUs. In contrast, we introduce a non-linear integer
programming problem that incorporates both GPU performance
and GPU energy as objectives. Wang et al. [50] show the energy
impact of auto-tuned polyhedral optimizations (i.e., tiling) on
CPUs, while Pradelle et al. [51] proposed a compile-time
energy model and energy optimizations that use polyhedral
IR. Such techniques are limited to CPU platforms and do not
consider both energy and performance. Orthogonally, empirical
auto-tuning has been widely used for TSS [34], [52]–[54].

Energy Efficient Computing with Hardware / Software:
Performance and energy modeling of GPUs has received much
attention [12], [55], [56]. Adaptive cache management [31] and
novel L2 cache designs [23] have recently aimed to improve
the GPU energy efficiency. Although these studies consider the
impact of architectural features on energy efficiency, they do not
consider the impact that compilation techniques have on energy
consumption. Our technique EATSS, incorporates variables
such as warp size and register tiling in the code generation
process to generate energy-efficient programs. Furthermore,
the management of power caps and DVFS have also been
proposed as effective energy optimizations on GPUs [15], [17]
as well as CPUs [57]. Unlike explicit DVFS energy modeling,
which might significantly differ depending on the hardware
generation, we propose a generalizable model applicable to
both server grade (GA100) and embedded (Xavier) GPUs.

Compiler Optimizations of GPU Energy Efficiency: Opti-
mizations of this class can be broadly grouped into partitioning
schemes [58], [59], runtime frequency adjustment [57], static
compiler analyses and flag selection [60]–[62] and hardware-
software codesign [63]–[65]. In contrast to existing work, to the
best of our knowledge, we are the first to explore energy and
performance optimization as a compiler objective in selecting
tile sizes targeting GPUs.

VII. CONCLUSION

In this paper, we introduce a new tile size selection approach
to exploit the trade-off between data reuse and data sharing,
which leads to short intra-thread data liveness but higher inter-
thread sharing. This translates to more energy savings, and by
incorporating a combined performance-energy objective, we are
able to choose tile sizes that deliver more performance per unit
of energy consumed across 2 different GPU architectures. Our
research will motivate the community to target performance
per unit of energy metrics rather than solely throughput on
future GPUs.
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and F. Catthoor, “Polyhedral parallel code generation for cuda,” ACM
Trans. Archit. Code Optim., vol. 9, no. 4, pp. 54:1–54:23, Jan. 2013.
[Online]. Available: http://doi.acm.org/10.1145/2400682.2400713

[25] L.-N. Pouchet, “Polybench: The polyhedral benchmark suite,” URL:
http://polybench.sf.net, 2012.

[26] M. Jayaweera, M. Kong, Y. Wang, and D. Kaeli, “EATSS:
Energy-aware affine tile size selection.” [Online]. Available: https:
//doi.org/10.5281/zenodo.10362265

[27] ——, “EATSS github repository: Energy-aware affine tile size selection,”
2024. [Online]. Available: https://github.com/mkongiv/eatss.git

[28] “System management interface smi,” accessed: 2023-11-
18. [Online]. Available: https://developer.nvidia.com/nvidia-system-
management-interface

[29] “Tegrastats utility,” accessed: 2023-11-18. [Online]. Available:
https://docs.nvidia.com/drive/drive os 5.1.6.1L/nvvib docs/index.html\
#page/DRIVE OS Linux SDK Development Guide/Utilities/util
tegra\stats.html

[30] “Nsight compute cli::nsight compute documentation,” accessed: 2023-
11-18. [Online]. Available: https://docs.nvidia.com/nsight-compute/
NsightComputeCli/index.html

[31] X. Chen, L.-W. Chang, C. I. Rodrigues, J. Lv, Z. Wang, and W.-M. Hwu,
“Adaptive cache management for energy-efficient gpu computing,” in 2014
47th Annual IEEE/ACM International Symposium on Microarchitecture.
USA: IEEE, 2014, pp. 343–355.

[32] A. Ilic, F. Pratas, and L. Sousa, “Beyond the roofline: Cache-aware power
and energy-efficiency modeling for multi-cores,” IEEE Transactions on
Computers, vol. 66, no. 1, pp. 52–58, 2017.

[33] A. Lopes, F. Pratas, L. Sousa, and A. Ilic, “Exploring gpu performance,
power and energy-efficiency bounds with cache-aware roofline modeling,”
in 2017 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS). USA: IEEE, 2017, pp. 259–268.

[34] X. Wu, M. Kruse, P. Balaprakash, H. Finkel, P. Hovland, V. Taylor, and
M. Hall, “Autotuning polybench benchmarks with llvm clang/polly loop
optimization pragmas using bayesian optimization,” Concurrency and
Computation: Practice and Experience, vol. 34, no. 20, p. e6683, 2022.

[35] T. Grosser, A. Groesslinger, and C. Lengauer, “Polly—performing
polyhedral optimizations on a low-level intermediate representation,”
Parallel Processing Letters, vol. 22, no. 04, p. 1250010, 2012.

[36] T. Grosser and T. Hoefler, “Polly-acc transparent compilation to
heterogeneous hardware,” in Proceedings of the 2016 International
Conference on Supercomputing, ser. ICS ’16. New York, NY, USA:
ACM, 2016, pp. 1:1–1:13. [Online]. Available: http://doi.acm.org/10.
1145/2925426.2926286

http://doi.acm.org/10.1145/1375581.1375595
https://doi.org/10.1145/73560.73588
https://doi.org/10.1145/305138.305197
https://doi.org/10.1145/305138.305197
http://doi.acm.org/10.1145/781131.781142
https://doi.org/10.1145/3447818.3460369
https://doi.org/10.1145/2304576.2304619
https://doi.org/10.1145/2435264.2435273
https://www.apple.com/newsroom/2022/03/apple-unveils-m1-ultra-the-worlds-most-powerful-chip-for-a-personal-computer/
https://www.apple.com/newsroom/2022/03/apple-unveils-m1-ultra-the-worlds-most-powerful-chip-for-a-personal-computer/
https://doi.org/10.1145/3466752.3480063
https://engineering.fb.com/2016/03/09/data-center-engineering/facebook-s-new-front-end-server-design-delivers-on-performance-without-sucking-up-power/
https://engineering.fb.com/2016/03/09/data-center-engineering/facebook-s-new-front-end-server-design-delivers-on-performance-without-sucking-up-power/
https://engineering.fb.com/2016/03/09/data-center-engineering/facebook-s-new-front-end-server-design-delivers-on-performance-without-sucking-up-power/
https://arxiv.org/abs/1906.02243
https://doi.org/10.1145/780822.781137
https://doi.org/10.1145/3011017
https://github.com/Z3Prover/z3.git
https://github.com/Z3Prover/z3.git
https://doi.org/10.1145/3408060
http://doi.acm.org/10.1145/2400682.2400713
https://doi.org/10.5281/zenodo.10362265
https://doi.org/10.5281/zenodo.10362265
https://github.com/mkongiv/eatss.git
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface
https://docs.nvidia.com/drive/drive_os_5.1.6.1L/nvvib_docs/index.html\#page/DRIVE_OS_Linux_SDK_Development_Guide/Utilities/util_tegra\stats.html
https://docs.nvidia.com/drive/drive_os_5.1.6.1L/nvvib_docs/index.html\#page/DRIVE_OS_Linux_SDK_Development_Guide/Utilities/util_tegra\stats.html
https://docs.nvidia.com/drive/drive_os_5.1.6.1L/nvvib_docs/index.html\#page/DRIVE_OS_Linux_SDK_Development_Guide/Utilities/util_tegra\stats.html
https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html
https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html
http://doi.acm.org/10.1145/2925426.2926286
http://doi.acm.org/10.1145/2925426.2926286


[37] R. T. Mullapudi, V. Vasista, and U. Bondhugula, “Polymage: Automatic
optimization for image processing pipelines,” in Proceedings of
the Twentieth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’15.
New York, NY, USA: ACM, 2015, pp. 429–443. [Online]. Available:
http://doi.acm.org/10.1145/2694344.2694364

[38] S. Coleman and K. S. McKinley, “Tile size selection using
cache organization and data layout,” in Proceedings of the ACM
SIGPLAN 1995 Conference on Programming Language Design and
Implementation, ser. PLDI ’95. New York, NY, USA: Association
for Computing Machinery, 1995, p. 279–290. [Online]. Available:
https://doi.org/10.1145/207110.207162

[39] J. Xue and C.-H. Huang, “Reuse-driven tiling for improving data locality,”
International Journal of Parallel Programming, vol. 26, no. 6, pp. 671–
696, 1998. [Online]. Available: https://doi.org/10.1023/A:1018734612524

[40] J. J. K. Park, Y. Park, and S. Mahlke, “A bypass first policy for energy-
efficient last level caches,” in 2016 International Conference on Embedded
Computer Systems: Architectures, Modeling and Simulation (SAMOS),
2016, pp. 63–70.

[41] T. Kisuki, P. M. Knijnenburg, and M. F. O’Boyle, “Combined selection of
tile sizes and unroll factors using iterative compilation,” in Proceedings
2000 International Conference on Parallel Architectures and Compilation
Techniques (Cat. No.PR00622). IEEE, 2000, pp. 237–246.

[42] S. Mehta, P.-H. Lin, and P.-C. Yew, “Revisiting loop fusion in the
polyhedral framework,” in Proceedings of the 19th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, ser.
PPoPP ’14. New York, NY, USA: ACM, 2014, pp. 233–246. [Online].
Available: http://doi.acm.org/10.1145/2555243.2555250

[43] V. Ferrari, R. Sousa, M. Pereira, J. a. P. L. de Carvalho, J. N. Amaral,
and G. Araujo, “Improving convolution via cache hierarchy tiling and
reduced packing,” in Proceedings of the International Conference on
Parallel Architectures and Compilation Techniques, ser. PACT ’22.
New York, NY, USA: Association for Computing Machinery, 2023, p.
538–539. [Online]. Available: https://doi.org/10.1145/3559009.3569678

[44] A. Jangda and U. Bondhugula, “An effective fusion and tile size model
for optimizing image processing pipelines,” in Proceedings of the 23rd
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP ’18. New York, NY, USA: ACM, 2018,
pp. 261–275. [Online]. Available: http://doi.acm.org/10.1145/3178487.
3178507

[45] T. Yuki, L. Renganarayanan, S. Rajopadhye, C. Anderson, A. E.
Eichenberger, and K. O’Brien, “Automatic creation of tile size selection
models,” in Proceedings of the 8th Annual IEEE/ACM International
Symposium on Code Generation and Optimization, ser. CGO ’10.
New York, NY, USA: Association for Computing Machinery, 2010, p.
190–199. [Online]. Available: https://doi.org/10.1145/1772954.1772982

[46] U. Bondhugula, A. Acharya, and A. Cohen, “The pluto+ algorithm: A
practical approach for parallelization and locality optimization of affine
loop nests,” ACM Trans. Program. Lang. Syst., vol. 38, no. 3, pp. 12:1–
12:32, Apr. 2016. [Online]. Available: http://doi.acm.org/10.1145/2896389

[47] R. Alur, J. Devietti, O. S. N. Leija, and N. Singhania, “Static
detection of uncoalesced accesses in gpu programs,” Formal Methods
in System Design, vol. 60, no. 1, pp. 1–32, 2022. [Online]. Available:
https://doi.org/10.1007/s10703-021-00362-8

[48] H. Cui, Q. Yi, J. Xue, L. Wang, Y. Yang, and X. Feng, “A highly
parallel reuse distance analysis algorithm on gpus,” in 2012 IEEE 26th
International Parallel and Distributed Processing Symposium, 2012, pp.
1080–1092.

[49] L.-N. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen, J. Ramanujam,
P. Sadayappan, and N. Vasilache, “Loop transformations: Convexity,
pruning and optimization,” in Proceedings of the 38th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, ser. POPL ’11. New York, NY, USA: Association
for Computing Machinery, 2011, p. 549–562. [Online]. Available:
https://doi.org/10.1145/1926385.1926449

[50] W. Wang, J. Cavazos, and A. Porterfield, “Energy auto-tuning using
the polyhedral approach,” in Proceedings of the 4th International
Workshop on Polyhedral Compilation Techniques, S. Rajopadhye and
S. Verdoolaege, Eds. Vienna, Austria: IMPACT, Jan 2014.

[51] B. Pradelle, M. Baskaran, T. Henretty, B. Meister, A. Konstantinidis,
and R. Lethin, “Polyhedral compilation for energy efficiency,” in 2016
IEEE High Performance Extreme Computing Conference (HPEC). USA:
IEEE, 2016, pp. 1–7.

[52] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom,
U.-M. O’Reilly, and S. Amarasinghe, “Opentuner: An extensible
framework for program autotuning,” in Proceedings of the 23rd
International Conference on Parallel Architectures and Compilation, ser.
PACT ’14. New York, NY, USA: ACM, 2014, pp. 303–316. [Online].
Available: http://doi.acm.org/10.1145/2628071.2628092

[53] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan,
L. Wang, Y. Hu, L. Ceze et al., “{TVM}: An automated end-to-end
optimizing compiler for deep learning,” in 13th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 18), 2018,
pp. 578–594.

[54] X. Wu, P. Balaprakash, M. Kruse, J. Koo, B. Videau, P. Hovland, V. Taylor,
B. Geltz, S. Jana, and M. Hall, “ytopt: Autotuning scientific applications
for energy efficiency at large scales,” arXiv preprint arXiv:2303.16245,
2023.

[55] C. Luo and R. Suda, “A performance and energy consumption analytical
model for gpu,” in 2011 IEEE ninth international conference on
dependable, autonomic and secure computing, IEEE. USA: IEEE,
2011, pp. 658–665.

[56] S. Song, C. Su, B. Rountree, and K. W. Cameron, “A simplified
and accurate model of power-performance efficiency on emergent gpu
architectures,” in 2013 IEEE 27th International Symposium on Parallel
and Distributed Processing. Cambridge, MA, USA: IEEE, 2013, pp.
673–686.

[57] R. Shrivastava and V. K. Nandivada, “Energy-efficient compilation of
irregular task-parallel loops,” ACM Trans. Archit. Code Optim., vol. 14,
no. 4, nov 2017. [Online]. Available: https://doi.org/10.1145/3136063

[58] R. Barik, N. Farooqui, B. T. Lewis, C. Hu, and T. Shpeisman, “A
black-box approach to energy-aware scheduling on integrated cpu-gpu
systems,” in Proceedings of the 2016 International Symposium on
Code Generation and Optimization, ser. CGO ’16. New York, NY,
USA: Association for Computing Machinery, 2016, p. 70–81. [Online].
Available: https://doi.org/10.1145/2854038.2854052

[59] S. Gupta, S. Feng, A. Ansari, S. Mahlke, and D. August, “Bundled
execution of recurring traces for energy-efficient general purpose
processing,” in Proceedings of the 44th Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO-44. New York, NY,
USA: Association for Computing Machinery, 2011, p. 12–23. [Online].
Available: https://doi.org/10.1145/2155620.2155623

[60] S. Abdulsalam, D. Lakomski, Q. Gu, T. Jin, and Z. Zong, “Program
energy efficiency: The impact of language, compiler and implementation
choices,” in International Green Computing Conference. Dallas, TX,
USA: IEEE, 2014, pp. 1–6.

[61] Y. Arafa, A. ElWazir, A. ElKanishy, Y. Aly, A. Elsayed, A.-H. Badawy,
G. Chennupati, S. Eidenbenz, and N. Santhi, “Verified instruction-level
energy consumption measurement for nvidia gpus,” in Proceedings of
the 17th ACM International Conference on Computing Frontiers, ser. CF
’20. New York, NY, USA: Association for Computing Machinery, 2020,
p. 60–70. [Online]. Available: https://doi.org/10.1145/3387902.3392613

[62] S. Puthoor and M. H. Lipasti, “Compiler assisted coalescing,”
in Proceedings of the 27th International Conference on Parallel
Architectures and Compilation Techniques, ser. PACT ’18. New York,
NY, USA: Association for Computing Machinery, 2018. [Online].
Available: https://doi.org/10.1145/3243176.3243203

[63] S.-C. Wang, L.-C. Kan, C.-L. Lee, Y.-S. Hwang, and J.-K. Lee,
“Architecture and compiler support for gpus using energy-efficient affine
register files,” ACM Trans. Des. Autom. Electron. Syst., vol. 23, no. 2,
nov 2017. [Online]. Available: https://doi.org/10.1145/3133218

[64] M. Gebhart, D. R. Johnson, D. Tarjan, S. W. Keckler, W. J. Dally,
E. Lindholm, and K. Skadron, “Energy-efficient mechanisms for man-
aging thread context in throughput processors,” in 2011 38th Annual
International Symposium on Computer Architecture (ISCA). USA: IEEE,
2011, pp. 235–246.

[65] X. Xie, Y. Liang, G. Sun, and D. Chen, “An efficient compiler frame-
work for cache bypassing on gpus,” in 2013 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD). USA: IEEE, 2013,
pp. 516–523.

http://doi.acm.org/10.1145/2694344.2694364
https://doi.org/10.1145/207110.207162
https://doi.org/10.1023/A:1018734612524
http://doi.acm.org/10.1145/2555243.2555250
https://doi.org/10.1145/3559009.3569678
http://doi.acm.org/10.1145/3178487.3178507
http://doi.acm.org/10.1145/3178487.3178507
https://doi.org/10.1145/1772954.1772982
http://doi.acm.org/10.1145/2896389
https://doi.org/10.1007/s10703-021-00362-8
https://doi.org/10.1145/1926385.1926449
http://doi.acm.org/10.1145/2628071.2628092
https://doi.org/10.1145/3136063
https://doi.org/10.1145/2854038.2854052
https://doi.org/10.1145/2155620.2155623
https://doi.org/10.1145/3387902.3392613
https://doi.org/10.1145/3243176.3243203
https://doi.org/10.1145/3133218

	Introduction
	Motivation
	Background
	Energy Aware Tile Size Selection
	Overview
	Bounds on Tile Size Variables
	Volume per Reference
	Selecting the Loop Dimension for Coalesced Memory Accesses (CMA) 
	Splitting Memory References 
	Estimating the Thread-Block Size
	Controlling the Number of Registers per SM
	Modeling the L2 Cache
	Resource Adaptation to Single/Double Precision
	Establishing Resource Limits
	Tile Size Selection Objective Function
	Repeatedly Finding Solutions with Z3
	Advantages and Application of our Model Generator

	Experimental Evaluation
	Experimental Setup
	Results on Polybench
	Relation between L2 Cache Usage and Average Power
	Case Study - Leveraging different warp fractions
	Comparison with cuBLAS / cuDNN 
	A sensitivity study of the input size on power consumption
	Compile Time Overhead due to Z3
	Comparison with Autotuners

	Related Work
	Conclusion
	Acknowledgements
	References

